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Abstract. Dinkelbach’s global optimization approach for finding the global maximum of the fractional 
programming problem is discussed. Based on this idea, a modified algorithm is presented which 
provides both upper and lower bounds at each iteration. The convergence of the lower and upper 
bounds to the global maximum function value is shown to be superlinear. In addition, the special case 
of fractional programming when the ratio involves only linear or quadratic terms is considered. In this 
case, the algorithm is guaranteed to find the global maximum to within any specified tolerance, 
regardless of the definiteness of the quadratic form. 

Key words. Global optimization, fractional programming. 

1. Introduction 

Given two continuous functions f : R” --, R and g : R” + R defined on a polyhedral 
set S C R” such that g(x) > 0 for all x E S, the fractional programming problem is 
to find some point x* which satisfies 

f(x*> f(x> 
g(x*> - YEY g(x) . (PI 

Applications and algorithms for fractional programs have been treated in consid- 
erable detail since the early work of Isbell and Marlow (1956). Included among 
the many applications are portfolio selection, stock cutting, game theory, and 
numerous decision problems in management science. See Grunspan (1971) for 
work known to up to 1971 and Schaible (1981), Schaible and Ibaraki (1983), and 
Avriel et al. (1988) for the most recent surveys. 

If f(x) is concave and non-negative, and g(x) and S are convex (and S is 
bounded), then problem (P) is called a concave-convex fractional program. 
Schaible (1976a) showed that such problems can be solved by a single concave 
problem using a simple variable transformation. This provides an efficient ap- 
proach for solving a limited class of fractional programming problems. Unfortu- 
nately, even in some of the simplest cases (for example when f(x) and g(x) are 
quadratic) a new constraint, which may be nonlinear, must be added (to the 
transformed feasible region), and the transformed problem becomes very difficult 
to solve. In addition, if the problem is not concave-convex initially, then the 
transformation does not even necessarily yield a concave problem. In fact, in the 
most general case, problem (P) may have many local maxima which are different 
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from the optimal one, and hence determining the global maximum is very difficult 
(i.e. NP-hard). 

Another more recent method is to replace the nonlinear functions by suitable 
linear underestimators and then obtain the global optimum by a vertex ranking 
procedure. This method, due to Pardalos (1986), is applicable only whenf(x) is a 
convex quadratic function and g(x) is linear (hence the ratio is quasiconvex). 

The last well-known approach, and one of the oldest, is to consider the global 
optimization problem 

where h E R is a constant. This “parametric” approach, which was first proposed 
by Dinkelbach (1967), generates a sequence of values Ai that converges to the 
global optimum function value (Schaible, 1976b). This method has since then 
been applied to many specific types of fractional programs including the concave- 
convex type, but very little work has been done to solve fractional programs 
where the ratio of two concave, two convex, or the ratio of a convex and a 
concave function is to be maximized. In addition, this method does not provide a 
sequence of improving upper bounds, and hence even though the sequence Ai may 
be converging to the global optimum function value, no bound on the error is 
available at any iteration. 

The method presented in this paper improves Dinkelbach’s algorithm by 
providing a means for obtaining a sequence of improving upper bounds which, 
along with the corresponding sequence of improving lower bounds, will provide a 
bound on the error at each iteration of the solution procedure. In addition, both 
the sequence of lower bounds and the sequence of upper bounds are shown to 
converge to the global optimum function value at a “superlinear” rate. The new 
algorithm is also appropriate for the class of quadratic fractional programs (i.e. 
one or both of f(x) and g(x) are quadratic) where the ratio may involve concave, 
convex, or even indefinite terms. It combines Dinkelbach’s approach with a 
method guaranteed to solve linearly constrained quadratic programming problems 
regardless of the definiteness of the quadratic from (Phillips and Rosen, 1990a). 

Two algorithms which are similar to the one presented here are given by 
Schaible (1976b) and Ibaraki (1983). Schaible’s method first computes a sequence 
of improving upper and lower bounds using an efficient section method. Dinkel- 
bath’s algorithm is then started as soon as the section method achieves a set of 
bounds that differ by some prespecified tolerance. The algorithm presented here 
differs from Schaible’s method in that the upper and lower bounds are continously 
improving throughout the procedure. Nevertheless, in both algorithms the se- 
quence of upper and lower bounds converges superlinearly. 

Likewise, Ibaraki (1983) presents a variety of related algorithms which also 
provide upper and lower bounds. These algorithms combine Dinkelbach’s ap- 
proach with various search techniques (e.g., Newton, binary, modified binary). 
The result is a set of related algorithms with convergence rates that vary 
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depending on the search technique employed. Ibaraki (1983) also provides a 
collection of computational results for the fractional knapsack problem and 
quadratic fractional programs. 

2. Problem Formulation and Mathematical Properties 

The fundamental result which relates the global optimization approach (GP) to 
the general fractional programming problem (P) is 

THEOREM 1 (Dinkelback 1967). x* solves the fractional programming problem 
(P) iff x* solves the global optimization problem (GP) with constant A* = f(x*)l 
&e*>. 

Dinkelbach’s original iterative algorithm is based on the result of this theorem 
and can be described as 

Dinkelbach(S, f, g): 
1. Select some x(O) E S. Set A(‘) : = f(x”‘) lg(x(‘)) and k : = 0. 
2. Solve the constrained global optimization problem 

to get the optimal solution point xck+l! 
3. If f(x@+*)) - A(k)g(x(ktl)) = 0, then set x* := xck+‘) and A* := Ack) and stop. 
4. If f(x@+‘)) - h(k)g(x(k+l)) > 0, then set Ack+‘) : = f(xCk+‘)) lg(xCk+‘)), 

k:=k+l and go to step 2. 

Clearly, the efficiency of this algorithm depends on the number of times the 
constrained global optimization problem must be solved, and on the time spent 
solving it during each iteration. Also note that a test of the form f(xCk+‘)) - 
A(k)g(X(k+l) ) < 0 is not necessary since, for any fixed k, 

f(x (k+l)) _ A(k)g(x(k+l) _ ) - yEa$ f(x) - ACk)g(x)) 2 f(xCk’) - ACk)g(xCk)) = 0. 

Now consider the function M(A) defined as 

W A) = y$ f(x) - Ag(x)) . 

The function M(A) has two interesting properties that will be important in 
proving convergence of upper and lower bounds to A* and in determining the rate 
of this convergence. The first of these properties is that for any lower bound A of 
A*, M(A) is positive, and for any upper bound A of A*, M(A) is negative. 
‘Secondly, the function M(A) is convex. That is, 

LEMMA 1 (Dinkelbach 1967). 
(1) WA) >O f or all A<A*, and M(A)<0 for all A>A*, and 
(2) M(A) is convex. 
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The sequence of iterates A(‘), A(r), . . . generated by algorithm “Dinkelbach- 
(S, f, g)” is strictly monotone increasing, and satisfy M( A(‘)) > 0 for i = 0, 1, . . . 
(Dinkelbach 1967). Hence, by Lemma 1 they provide a strictly monotone 
increasing sequence of lower bounds for A*. 

3. Lower Bounds and Convergence Rates 

A sequence of iterates CY(‘), rx(‘), . . . is said to converge superlinearly to (Y* if 

lim Ia* - a(“+l)l =. 
n*m e ?I+1 

for all 8 E (0, 11. In order to demonstrate that the sequence of lower bounds A(‘) 
converges superlinearly to A* = f(x*) lg(x*) where x* is any optimal solution for 
(P), consider the following 

LEMMA 2 (Schaible 1979). If x* E S is any optimal solution for (P) and x’ solves 
M( A’) and A’ < A*, then 

A* _ f@‘) go <(A* - A’)(1 - g) 

where Osl-g(x*)lg(x’)<l. 
From Lemma 2, with A’ = A(“) and x’ = x@+l) (since x’ is the solution to M( A’) 
and the algorithm “Dinkelbach(S, f, g)” denotes the solution of M( A(“)) by 
xCncl)) we get the error 

(A* - A(n+l))<(A* - A’“))(1 - ,$:;,,) . 

Now let E. = (1 - g(x*) lg(x”‘)) for i = 1 
Then it can be shown that c1 > Ed 3. . 

7 2 ,*--, where (by Lemma 2) 0 G gi < 1. 
* 2 0 (Schaible, 1976b). In addition, from 

Lemma 2 with x’ = x(*) and A’ = A(‘), it is clear that c1 < 1. In order to prove that 
the sequence of iterates A(‘), A(l), . . . converges to A* and that rate of conver- 
gence is in fact superlinear, we need the following important result. 

LEMMA 3 (Schaible 1973). There exists an x* E S, an optimal solution for (P), 
such that 

lim E, = 0 . n--bm 

Thus, there is some x* E S, an optimal solution for (P), such that the sequence 
El, E2, * * * converges to 0, and (by induction on the error result given above) 



GLOBAL OPTIMIZATION OF FRACTIONAL PROGRAMS 177 

Hence, for any 8 E (0, 11, there exists some constant integer n, 2 0 such that for 
all i 2 IZ~ we get ci < 8. Defining the constant 

we get that 

(A* - A(“+‘)) 

0 n+l 
< (A* - A(O))& c1 (;) 

i=ns 

and therefore 

lim (A* - A@+‘)) = o 
n-+m 8 n+l 

That is, the sequence of lower bounds A(“+‘) converges to A* -f(x*) lg(x*) and 
does so at a superlinear rate (see also Schaible, 1976b). 

4. Upper Bounds and Convergence Rates 

As it now stands, the algorithm “Dinkelbach(S, f, g)” does not provide upper 
bounds on the global optimum function value A* =f(x*)lg(x*). One way to 
obtain an initial upper bound is to solve the following two problems: 

to get the optimal solution f(Y), and 

to get the optimal solution g(x”). Then an initial upper bound is clearly given by 
Y (-‘) -f(x’)lg(x”). In fact, according to Lemma 1 (part l), any y E R satisfying 
M(y) < 0 would also be an upper bound. Hence, if we define 

W)( 
(n-1) _ A’“’ 

M(&)) _ M( A’“‘) 

where A’“’ is the most recent lower bound of A* and y(“-l) is the most recent 
upper bound of A*, then the new upper bound is given by y(“). Figure 1 illustrates 
that y(“) is just the root of the line segment joining the points (A’“‘, M( A(“))) and 
(y(“-l), M(y(“-‘))). 

This leads to an important modification of the algorithm “Dinkelbach(S, f, g)“: 

Fract(S, f, g, 8): 
1. Select some x(O) E S. Set A(‘) : = f(x”‘) lg(x’“‘). 
2. Solve the constrained global optimization problems 
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Fig. 1. 

and 

to get the optimal function values f(x’) and g(Y), respectively. Set 
y(-‘) := f(x’) /g(x”) and k := 0. If y(-‘) - A(‘) G 6, then set A* := A(‘) and 
x* := x(O) and stop. 

3. Solve the constrained global optimization problem 

M( ACk’) = y$l$ f(x) - A’k’g(x)) 

to get the optimal solution point x@+r! 
4. If M( A@)) = 0, then set x* := x@+‘) and A* : = A@) and stop. 
5. Solve the constrained global optimization problem 

WY ck-l)) = ‘3p,“s”( f(x) - y ‘“-‘)g(x)) 

to get the optimal solution point yck). 
6. If M(y ckel)) = 0, then set x* := yck) and A* := y w’) and stop. 
7. Set 

y(k) := y(k-l) - M(y (k-1$ 
(k-l) _ Ack) 

M( y:k-l’) - M( Ack)) ) ’ 

8. Ify (k) - Ack) < 6, then set A* := Ack) and x* := xck+‘) and stop. 
9. Set Ackfl) := f(x(ksl)) lg(x(k+‘)), k := k + 1 and go to step 3. 

Note that the parameter 6 2 0 is a user supplied stopping tolerance. The following 
theorem shows that the sequence of iterates y(-‘), y(O), y(l), . . . is, in fact, a 
sequence of upper bounds on A*, and that the sequence is strictly monotonically 
decreasing. 

THEOREM 2. A* < y(‘+‘) < y(‘) for i = -l,O, 1, . . . 
Proof. Clearly A* 6 y (-l) Let n 3 0 and consider the line segment L(A) joining . 

the points (A’“), M( A(“))) and (y(“-‘I, M( y (“-l))). Note that if M( A’“‘) = 0, then 
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A* = A’“’ and #“’ would not be computed. Likewise, if M(r’“-l’) = 0 then 
,,* = y(“-‘) and #“) would not get computed. Thus, without loss of generality, 
assume that M(h’“‘) #O and M(y(“-‘)) #O. By induction, if A(“) <A* and 
Y (n-1) > A* then, by Lemma 1 (part l), L( A’“‘) = M( A’“‘) > 0 and L(-y(“-I)) = 
&.qyW’ ) < 0 so that the root y@) of L(A) satisfies A’“’ < -y(“) < y (“-‘). Hence, 
p) < yw) so that the sequence is strictly monotonically decreasing. In addi- 
tion, y(“) = qh’“’ + (1 - q)y @-r) for some q E (0, l), and since M(A) is convex 
(Lemma 1 (part 2)), we get 

M(y’“‘) = M( qh’“’ + (1 - q)y’“pl’) s qM( A’“‘) + (1 - q)M(y(“-‘)) 

= qL( A(“)) + (1 - q)L(y(“-l) 1 

= I,( qh’“’ + (1 - q)y@-l)) = L(y’“‘) = 0 . 

That is, M(r’“‘) G 0 so that, by Lemma 1 (part l), A* s y(“). 0 

To show that the sequence of upper bounds y(‘) converges to A* =f(x*)lg(x*), 
and that this convergence is superlinear, consider the definition of the (n + 1)” 
iterate (assuming, of course, that the solution has not yet been found, i.e. 
M( A(“+l) )#0 and M(y(“))#O) 

#“) _ A(“+l) 
M(r’“‘) - M( Ab+l)) > ’ 

After some algebraic manipulation, it can be shown that 

(A* -Y @+l)) = (A* - #"') + j,,f(#")) 
#“) _ A(“+l) 

M(y(")) - M(A("+')) > 

= -(A* _ ~(n+l))( A* _ r(")) 2T!F;+l{ 
n+l 

for some &+1, e,+, E [A’“+‘), ~‘“‘1. Now, let 

~gm”(5)l 
K = 2 IgM’( l)l 

where Z = [A”‘, y(-‘)I. Note that Z,,+r = [A(“+‘), r’“‘] C Z for n = -l,O, 1, . . . so 
that K is an upper bound on 

lM”(5n+l)l 21M,(l 
ntl 

)I for n = -l,O, 1,. . . 

An upper bound on the error at the (n + 1)” iteration can now be written as 
IA* - #“+‘)I < IA* - A(“+‘)llA* _ y(n)lK . 

Hence, by induction we get that 
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n+l 
IA* - y(n+')l < Kn+2 IA* - y(-')I lg (A* - A(')[ 

and recalling (from the analysis of the convergence of the sequence of lower 
bounds A(‘+‘) to A*) that 

(A* - A(‘+l)) s (A* - A(i))Ei+l 

where &i = (1 - g(x*) /g(a?‘)) an w ereOSEi<l, then d ’ h 
ntl 

IA* - p+‘)l< Kn+2 IA* _ y(-l)llA* _ A(0)ln+2 
,G &p-i+2 . 

Again, by Lemma 3, the sequence Ed, s2, . . . converges to 0. Hence, for any 
8 E (0, 11, there exists some constant integer ng 3 0 such that for all i 3 n, we get 
(K/A* - ACo)]si) < 8. Thus, by defining the constant 

a, = K/A* - 
A(o)l n-$1 ( K(A* - AF)]&r-ii2) 

we get that 

iA* - ~(“+‘)l ~ ,A* _ 
8 n+l Y 

(-l)lao fil ( KIA* - A~)]E’-~+‘). 
i=ns 

Hence, 

lim iA* - Y(“+‘? = o 
n-tm 8 n+l 

so that the sequence -y(“+‘) converges to A*, and does so at a superlinear rate. 

5. Special Cases 

If the feasible set S is polyhedral and the functions f(x) and g(x) are either linear 
or quadratic, then the algorithm solves a sequence of linear or quadratic 
programs, respectively. In particular, if f(x) = c’x and g(x) = d’x then the al- 
gorithm solves the sequence of linear programs 

If both f(x) and g(x) are quadratic, i.e., f(x) = (1 /2)xfJ2x + c’x and g(x) = 
(1/2)x’Px + dk, then the algorithm solves the sequence of quadratic programs 

yzjc + x’(Q - A%‘)x + (c - ACk)d)‘x . 

Notice that the matrix (Q - ACk’P) may be indefinite, in which case the algorithm 
is required to find the global maximum of a linearly constrained indefinite 
quadratic function. Even though this is an NP-hard problem (e.g., when 
( Q-A’“‘P) is positive definite), the method developed by Phillips and Rosen (1990a) is 



GLOBAL OPTIMIZATION OF FRACTIONAL PROGRAMS 181 

guaranteed to find an c-approximate global maximum (i.e., the relative error is 
no larger than E) for any specified E > 0. 

Furthermore, if f(x) and g(x) are such that f(x) - h g(x) is only “partially 
separable”, then the method developed by Phillips and Rosen (1990b) can be 
used to find an c-approximate global maximum for any specified E > 0. That is, 
the method of Phillips and Rosen (1990b) is guaranteed to find solutions to the 
sequence of subproblems 

M( /ck)) = YZf( f(x) - dk)g(x)) 

and 

MY ck-l)) = :a$ f(x) - yCk-l)g(x)) 

if x can be partitioned into two components x = (w, 2) such that f(x) - Kg(x) 
(where the constant K = Ack) or yck-l)) can be written in the form q(w) + I/J(Z) 
where q(w) is a separable convex function of w and I/J(Z) is a concave (but not 
necessarily separable) function of z. The applicability of these methods to the 
solution of these subproblems greatly extends the class of fractional programming 
problems that can be solved in practice. Computational results on a class of 
fractional programming problems which can be put into partially separable form 
(which includes the class of quadratic functions) are forthcoming. 
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